terça-feira, 22 de setembro de 2015

Geometria analítica - Intro


                                         Geometria analítica    
                   

Também é denominada de coordenadas geométricas, se baseia nos estudos da geometria através do uso da Algébra. Os estudos inciais estão ligados ao matemático francês René Descartes (1596-1650) que criou o sistema de coordenadas cartesianas.

➸Os estudos relacionados à Geometria Analítica tiveram seu início no século XVII, Descartes, ao relacionar a Álgebra com a Geometria, criou princípios matemáticos que foram capazes de analisar por métodos geométricos as propriedades do ponto, da reta e da circunferência, determinando distâncias entre eles, localização e pontos de coordenadas.


Uma característica bem importante da G.A (geometria analítica) se apresenta na definição de formas geométricas de modo numérico, extraindo dados informativos da representação. Com base nesses estudos, a Matemática passa a ser vista como uma disciplina moderna, capaz de explicar e demonstrar situações relacionadas ao espaço. As noções intuitivas de vetores começam a ser exploradas de forma contundente, na busca por resultados numéricos que expressem as ideias da união da Geometria com a Álgebra.
Podemos relacionar os seguintes tópicos ao estudo da G.A.:

➸Estudo Analítico do Ponto
°Plano Cartesiano
°Distância entre dois pontos
°Ponto médio de um segmento
°Condição de alinhamento de três pontos;

*Estudo da Reta
°Equação geral e reduzida da reta
°Intersecção entre retas
°Paralelismo
°Perpendicularidade
°Ângulos entre retas
°Distância entre ponto e reta;

*Estudo da Circunferência
°Equação geral e reduzida da circunferência
°Posições relativas entre ponto e circunferência
°Posições relativas entre reta e circunferência
°Problemas relacionados à tangência;

*Estudo das Cônicas
°Elipse
°Hipérbole
°Parábola Intersecção entre cônicas
°Retas tangentes a uma cônica.

Fonte:Marco Noé, Graduado em matemática; Brasil escola; Wikipédia;  Khan Academy

                                       Aluna:Isabela Oliveira 3°D

Nenhum comentário:

Postar um comentário